The KBSA Requirements/Specification Facet: ARIES

W. Lewis Johnson, Martin S. Feather

USC / Information Sciences Institute
4676 Admiralty Way
Marina del Rey, CA 90292-6695

Abstract

This paper describes a transformation-based soft-
ware environment which supports the acquisition
and validation of software requirements specifications.
These requirements may be stated informally at first,
and then gradually formalized and elaborated. The
environment assists in the validation of formalized re-
quirements by translating them into natural language
and graphical diagrams, and testing them against a
running simulation of the system to be built. Re-
quirements defined in terms of domain concepts are
transformed into constraints on system components.
The advantages of this approach are that specifica-
tions can be traced back to requirements and domain
concepts, which in turn have been precisely defined.

1 Introduction

We are building a requirements/specification envi-
ronment called ARIES! which requirements analysts
may use in evaluating system requirements and cod-
ifying them in formal specifications. We are creating
this environment to help us address several roadblocks
in providing knowledge-based automated assistance to
the process of developing formal specifications. One
of the principal roadblocks is that formal specification
languages are difficult to use in requirements acqui-
sition, particularly by people who are not experts in
logic. ARIES provides tools for the gradual evolution
of acquired requirements, expressed in hypertext and
graphical diagrams, into formal specifications. The
analysts invoke transformations to carry out this evo-
lution; in general, support for rapid and coordinated
evolution of requirements is a major concern. ARIES is
particularly concerned with problems that arise in the

1 ARIES stands for Acquisition of Requirements and Incremen-
tal Evolution of Specifications.

0-8186-2605-4/91 $1.00 © 1991 IEEE

48

David R. Harris

Lockheed Sanders
MER24-1583, P.O. Box 2034
Nashua, NH 03061-2034

development of specifications of large systems. Speci-
fication reuse is a major concern, so that large specifi-
cations do not have to be written from scratch. Mech-
anisms are provided for dealing with conflicts in re-
quirements, especially those arising when groups of an-
alysts work together. Validation techniques, including
simulation, deduction, and abstraction, are provided,
to cope with the problem that large specifications are
difficult to understand and reason about.

ARIES is an intensively knowledge-based system.
It incorporates knowledge about application domains,
system components, and design processes, and sup-
ports analysts in applying this knowledge to the re-
quirements analysis process. ARIES is not just a re-
search prototype, but a plausible model for how to
build knowledge-based tools that can handle large-
scale software engineering problems.

The next section provides background and motiva- -
tion for the ARIES effort. Section 3 describes the case
studies of knowledge-based requirements acquisition
we conducted as part of the project, and the lessons
learned that motivated the functionality of the system.
Section 4 then gives an overview of the mechanisms
developed, particularly those supporting specification
evolution.

2 Background

ARIES is a product of the ongoing Knowledge-
Based Software Assistant (KBsa) program. KBSA, as
proposed in the 1983 report by the US Air Force’s
Rome Laboratories [12], was conceived as an inte-
grated knowledge-based system to support all aspects
of the software life cycle. Such an assistant would sup-
port specification-based software development: pro-
grams would not be written in conventional program-
ming languages, but instead would be written in an
executable specification language, from which efficient
umplementations would be mechanically derived. In a




complete KBSA system, and to some extent in ARIES as
well, requirements analysis tools and implementation
tools are integrated into a single environment, allow-
ing analysts to perform exploratory prototyping dur-
ing requirements analysis. Nevertheless, the design of
ARIES does not preclude its use in situations where a
full kBSA system is not available.

The ARIES effort builds on the results of earlier ef-
forts at USC / ISI and Lockheed Sanders. Require-
ments analysis was addressed in Lockheed Sanders’s
Knowledge-Based Requirements Assistant [14]. ISI
developed the Knowledge-Based Specification Assis-
tant [27, 18, 17] to support specification construction,
validation, and evolution.

The Requirements Assistant provided facilities for
acquisition of informal requirements, entered as struc-
tured text and diagrams. It had a limited case-frame-
based ability to assist in the formalization of informal
text, by recognizing words in a lexicon of domain con-
cepts. It allowed users to describe systems from dif-
ferent points of view, e.g., an “intelligent notepad” for
informal text, data flow, state transition, and func-
tional decomposition. The Requirements Assistant
maintained an internal representation of the system
being built which integrates these different views, as
do certain other CASE tools such as STATEMATE [13].
It was able to generate DoD-sTD-2167A-style require-
ments documents from its system descriptions.

The principal contribution of the Knowledge-Based
Specification Assistant was the development of evo-
lution transformations for specification modification
[20]. The Specification Assistant also provided valida-
tion tools in the form of a paraphraser which trans-
lates specifications into English [33, 25], a symbolic
evaluator for simulating the specification and proving
theorems about it [6], and static analysis tools which
automatically maintain and update analysis informa-
tion as the specification is transformed [23].

2.1 The Requirements/Specification
Work Product

ARIES assumes a model of software development in
which there are multiple goals for requirements anal-
ysis. First, it should produce a software requirements
specification (sRs), describing the characteristics of
the system to be built. Davis, in his book Software
Requirements Analysis and Specification [8], identi-
fies a number of properties of a good sRs;it should
be correct, unambiguous, complete, verifiable, consis-
tent, understandable, modifiable, traceable, and an-
notated. We are in agreement with his list. How-
ever, textual documents are themselves but a means

49

to achieve a more fundamental goal, namely commu-
nication of requirements to designers and stakeholders
(end-users, procurement agents, etc.). Other commu-
nication media, such as diagrams, are useful to ac-
complish successful communication. Executable pro-
totypes are another useful product, both to help com-
municate requirements and to validate the accuracy
of those requirements. Finally, we assume that sys-
tem requirements are not developed from scratch and
thrown away. Instead, a goal of the requirements anal-
ysis process should be to develop generic requirements
descriptions applicable to many possible systems in
the application domain, and reuse such descriptions
where they exist.

3 The
Process

Requirements/Specification

Over the past two years, we have grounded our work
using two application domains — road traffic control
and air traffic control. We are currently using ARIES
to formalize the requirements for significant sections of
the Federal Aviation Administration’s Advanced Au-
tomation System {AAs) system specification [1]. So
far, around 1500 concepts and requirements definitions
have been entered into the system, of which 350 are
specific to AAS, 160 are specific to an example road
traffic control specification, and 1000 are reusable in
nature. The experiments in specification development
in these domains have led us to a number of conclu-
sions regarding the nature of the specification devel-
opmnent process.

3.1 Central issues

We believe that coordinating multiple users and
viewpoints, capturing requirements that can be shared
across systems, and sharing core concepts and knowl-
edge across dorains are central to supporting the re-
quirements/specification process.

3.1.1 Coordinating multiple analysts and

viewpoints

The requirements for future air traffic control systems
are extremely detailed: system descriptions for the
Advanced Automation System (AAS) run into the hun-
dreds of pages. The work of specification must be di-
vided among multiple analysts in order to be feasible.
In our current analysis and formalization of sections
of the AAS requirements, we find that the the FAA



has identified particular functional areas for that sys-
tem. These areas, including track processing, flight
plan processing, and traffic management, seem to be
good candidates for assignment to different analysts
or analyst teams.

However, one important conclusion we have drawn
is that a proper balance must be struck between co-
ordinated and independent work of analysts. Re-
quirements are not like program modules, that can
be handed off to independent coders to implement.
There is inevitably significant overlap between them.
They may share a significant amount of common ter-
minology between them. Requirements expressed in
one functional area may have impact on other func-
tional areas. In the AAs specification, we specified
track processing, flight plan processing, and assign-
ment of control separately. By comparing notes, we
then found that flight plan information had an impact
on how tracks are disambiguated, and that the pro-
cess of handing off control of aircraft from one facility
to the next had an impact on when flight plan in-
formation is communicated between facility computer
systems. Figure 1 illustrates that these overlapping
concerns become very apparent when viewed from the
state transition perspective. Qur approach to this is-
sue has been to work on machine-mediated ways to
support separation and subsequent merging of work
products, rather than to force analysts to constantly
coordinate whenever an area of potential common con-
cern is identified.

Inconsistency is pervasive. Separate develop-
ment of different requirements areas inevitably leads
to inconsistencies. These inconsistencies are a natu-
ral consequence of allowing analysts to focus on dif-
ferent concerns individually. Although consistency is
an important goal for the requirements process to
achieve, we have concluded that it cannot be guar-
anteed and maintained throughout the requirements
analysis process without forcing analysts to constantly
compare their requirements descriptions against each
other. Therefore, consistency must be achieved grad-
ually, at an appropriate point in the specification de-
velopment process. Nevertheless, it may not be pos-
sible to recognize all inconsistencies within a system
description.

Multiple models must be supported. One
place where inconsistencies need to be resolved is
where multiple models are used. For example, when
analysts specify radar processing requirements it is im-
portant to model the dynamics of aircraft motion to

50

make sure that the system is able to track aircraft
under normal maneuver conditions. When specify-
ing flight plan monitoring, however, it is sufficient to
assume that aircraft will move in straight lines from
point to point, and change direction instantaneously,
since the time required for a maneuver is very short
compared to the time typically spent following straight
flight paths. One way of resolving such conflicts is to
develop a specialization hierarchy that relates these
models to common abstractions.

3.1.2 Sharing requirements across systems

The designer of an air traffic control system must make
sure that computers and human agents can together
achieve the goals of air traffic control, i.e., to ensure
the safe, orderly, and expeditious flow of air traffic.
How this will be done by the AAs is to some extent de-
termined by current air traffic control practice. Thus
the next generation of controller consoles are being
designed to simulate on computer displays the racks
of paper flight strips that controllers currently use to
keep track of flights. Yet although air traffic control
practice is codified in federal regulations and letters of
agreement, and is thus resistant to change, the divi-
sion of labor between computer and human controller
is expected to change over time. The FAA anticipates
that new computer systems will gradually be intro-
duced into the new air traffic control framework over
the next twenty years, taking increasing responsibility
for activities that are now performed by controllers.

Thus requirements descriptions for the AAS system
must be shared across a series of future systems. If
separate requirements documents are developed sepa-
rately for each system, there is no assurance that the
same requirements will be satisfied by each successive
system. Furthermore, it is not sufficient simply to
copy requirements from one requirements document
to the next. Since some aspects of the system envi-
ronment change and some aspects do not, it is difficult
to take requirements expressed assuming one environ-
mental context and transfer them to another environ-
mental context. It therefore appears desirable to be
able to represent overall requirements on air traffic
control, without being forced to commit to particular
computer systems satisfying those requirements. We
can only conjecture whether or not this need to share
requirements applies to other domains, but we believe
that 1t will in any situation where successive versions
of computer systems are anticipated, or where system
maintenance may require extensive revision over time.
We therefore believe it appropriate to focus ARIES on
this class of domains and systems.




State Transition Diagram for AIRCRAFT-STATIUS

Quit EpIv TERMINOLOGY

BEHAVIOR

UP-A-LEVEL PRESENT

"LIGHT-PLA

CORRELATE=MIH-CROSSTELL ui(mmﬁnmuuuwma
Al
L\
/
/ 4
/

STABL 1SH-TPAICK

DROF~
»
i
y /w\r?un\‘\\
~—— ¥

-
\

}(ll FIRTE-TRu )

CoRST

tHCK

Figure 1: Specifications for tracking, flight plan processing, and handoff (crosstell in the diagram) are highly

interrelated

3.1.3 Sharing across domains

Just as there are opportunities for sharing across sys-
tems in the same domain, there are opportunities for
sharing across domains. The road traffic control prob-
lem shares certain characteristics with air traffic con-
trol: both problems are concerned with the mainte-
nance of safe, orderly, and expeditious flow of vehic-
ular traffic. They both assume a common body of
underlying concepts, such as vehicles, sensors, spatial
geometry, etc. We have been endeavoring to model
such concepts so that the commonalities and differ-
ences across the two domains are captured.

3.2 Typical modifications

We are discovering important categories of specifi-
cation modification. These categories are enabling us
to provide adequate automation for all aspects of spec-
ification development and are providing insight into
finding and encoding cornerstone decisions of a typi-
cal development.

o Categorization by focus of change

Our experience has revealed that the choice of
which evolution transformation to apply is of-
ten determined by the nature of the change we
wish to achieve. We are identifying the important
characteristics of specifications that people rea-
son about and manipulate during design — mod-
ularity, entity-relationship, data flow, and control

51

flow.

o Informal to formal mappings

Analysts will frequently refer to existing docu-
ments for clarification or endorsement of require-
ments statements. The link between paragraphs
in documents and resulting specifications either
goes unstated or has only rudimentary machine
mediation. Hyperstrings are used in ARIES to cap-
ture informal and semi-formal information.

o General 1o specific mappings

One common technique is to define a concept first
by placing it at a high point in the specialization
hierarchies, and describing informally what addi-
tional properties the concept should have. After
browsing the knowledge base further, specializa-
tions that are closer to the analyst’s intent may
be found, or else existing specializations may be
adapted using evolution transformations. This al-
lows the analyst to position the concept further
down in the hierarchy.

o Default removal

Another common incremental formalization is the
elimination of defaults. A system description that
is more detailed, so that defaulting is no longer
necessary, can be viewed as more formal than one
in which defaults are liberally employed.

o Ideal to compromised



In many cases the initial requirements are overly
ideal, and in the course of development they must
be carefully compromised to make them mutually
compatible. Traceability must record when (and
why) such compromises occur. Since compro-
mises to requirements are evolutions, we use our
same mechanism — evolution transformations —
to carry them out, and record the applications of
these transformations to provide traceability.

4 Mechanisms for Supporting Specifi-
cation Evolution

In this section, we describe the major techni-
cal challenges we have undertaken to create ARIES.
These challenges are explored in more detail elsewhere

[21, 22, 20].
4,1 Folders

Requirements may be defined by specializing and
adapting existing requirements in ARIES’s knowledge
base of common requirements; this makes it easier to
define requirements quickly and accurately. Folders
are used In ARIES to capture, separate, and relate
bodies of requirements information. The analysts can
control the extent to which folders share information,
and gradually increase the sharing as inconsistencies
are reconciled. ARIES places a heavy emphasis on cod-
ification and use of domain knowledge in requirements
analysis. (See the accompanying paper, [15], for more
detailed information on this important component of
ARIES.)

4.2 Acquisition and review

The acquisition tools in ARIES aim to capture ini-
tial statements of requirements as simply and directly
as possible. If requirements cannot be initially stated
in a manner that is intuitive for the analyst or end-
user, it is difficult to ensure that the requirements are
correct. These actions are done through an interface
called the Presentation Facility, which makes it pos-
sible to enter and view information through a vari-
ety of different notations. All notations that ARIES
supports are views of the same underlying system de-
scription representation. The notations, which we call
“presentations,” include diagrams (such as data flow,
state transition, functional decomposition, type tax-
onomy, relation taxonomy, event taxonomy), spread-
sheets, formal specification text, and informal para-
phrasing.

52

4.2.1 Supporting multiple presentations

The key technical challenge in supporting multiple
presentations has been to develop a common inter-
nal representation, the ARIES Metamodel, that will
easily map to the notations of stereotypical views of
systems (e.g., data flow arcs, system functional de-
composition, state transitions, predicate calculus-like
formalisms). Some metamodel concepts are relatively
separable and easy to handle. For example, the type,
relation, and event taxonomic diagrams are generated
from the internal representation in an obvious way.
Other concepts are highly interrelated. States are re-
lations which are derived from a designated relation
which has a parameter varying over a finite set of val-
nes. State transitions are demon events that update
the current-state — that is, change the value of the pa-
rameter and place some aspect of the system in a new
state. In figure 1, initiate-track, correlate-with-crosstell,
and the other arrows are all state-transition events.
tracked and the other circles are relations for each of
the possible states that an aircraft track can be in.

This means that arbitrary relations and events will
not be presented in state transition diagrams, since
they are not of the desired form. Instead, the state
transition presentation only presents relations of class
state-relation, i.e., those which are in a form simi-
lar to a current-state relation that would have been
acquired as a state transition diagram. Conversely,
state-transitions and state-relations will show up in
other presentations. For example, a state-transition
will appear in any RG presentation as a demon, and
along with other demons will populate various event
presentations.?

4.2.2 The presentation architecture

The ARIES Presentation Facility is an architecture for
defining interactive presentations linked to the ARIES
Metamodel. It is implemented in CLX and CLUE, on
top of X windows, and is operational on both the TI
Explorer and the Sun. Each presentation definition
includes a declarative description of the metamodel
relations which are used to establish and link presen-
tation pieces, and the editing and navigation actions
(associated either with a presentation piece or the en-
tire presentation). Editing actions match effect de-
scriptions of transformations. Once the analyst edits

2Ra, or Reusable Gist [19], is our principal formal specifica-
tion language, based on the earlier Gist language but incorpo-
rating constructs to support reuse, and with a syntax based in
part on other current high-level programming languages, such
as Refine[28].



a presentation, ARIES searches for and applies the evo-
lution transformations which can make the required
change. The ARIES presentation framework makes it
possible to construct powerful presentations combin-
ing text and graphics generation capabilities.

4.3 Analysis and simulation

Analysis tools include a constraint propagation en-
gine and an incremental static analyzer. Analysis tools
are important in order to check for completeness and
consistency. A constraint mechanism, derived from
Steele’s Constraint Language [32], has been incor-
porated into ARIES for general maintenance of con-
straints — bidirectional propagation, contradiction
detection, retraction, and explanation. This mecha-
nism is essential where there are interacting design
properties (e.g., interplay between performance char-
acteristics) and developers can use assistance in identi-
fying when an interaction of requirements may not be
achievable. An incremental static analyzer, a version
of the static analyzer developed for the Specification
Assistant [23], maintains calling and type information
for the system description as it is being edited. It
also does such things as detect specification freedoms
which must be removed temporarily before simulation
can be performed.

Simulation tools are useful in order to observe the
behavior of a proposed system or its environment, in
order to determine appropriate parameters for require-
ments or to discover unexpected or erroneous behav-
ior. Simulations are constructed by means of a spe-
cially modified compiler which translates a subset of
the ARIES Metamodel into Lisp and APS5, an in-core
relational database [7]. Events described in the specifi-
cation can compile either into ordinary Lisp functions,
or into task objects to be scheduled by the simulator’s
task scheduler. Functional requirements in the form
of invariants are compiled into rules which notify the
analyst if and when they are violated [3].

Successful simulation analysis depends crucially
upon the model of the system and environment chosen
for simulation. When attempting to answer a specific
validation question, it is useful to remove from con-
sideration those features of the system which are not
relevant to the question. Otherwise the simulation will
generate volumes of useless information.

Kevin Benner in our group is currently investigat-
ing which abstractions are most suitable for which
kinds of analysis tasks. He is developing evolution
transformations which construct the abstractions and
designing the simulator to execute these abstractions.

53

Together these form a powerful set of capabilities for
specification validation.

4.4 Evolution transformations

As part of our carlier Specification Assistant work,
we built a sizable library of evolution transforma-
tions, that is, transformations whose very purpose is to
change the meaning of the specification to which they
are applied. Like conventional correctness-preserving
transformations, they blend computer power — the
ability to conduct repeated, mechanical operations
rapidly and reliably — and human intuition ~— know-
ing which transformation to apply when.

A major goal of the ARIES project has been to sup-
port the user in selecting evolution transformations
from a library, and in applying them. This library
constitutes reusable knowledge about the process of
requirements analysis, which complements the knowl-
edge about the inputs and outputs of this process, i.e.,
knowledge of domains and systems.

The representation of specification concepts enables
efficient and effective modification of the semantic
content of complex specifications. Having identified
specification characteristics, we then chose a common
representation for them, semantic nets — nodes con-
nected by links, where the types of the nodes and links
determine which characteristic they represent. For
example, in the entity-relationship model, procedures
and types are represented by nodes; the type of a pro-
cedure’s formal parameter is represented by linking
the node representing that procedure with the node
representing that type. Changes to the specification
induce the corresponding changes on these semantic
net representations of the specification’s characteris-
tics. Each change can be expressed as a combination
of creating and destroying nodes, and inserting and
removing links between nodes. We have identified
frequently recurring composites of these operations,
for example, splice removes a direct link between two
nodes, A and B say, and replaces it with two links via
an intermediary, C say, so that A is linked to C and
C is linked to B.

We have characterized each evolution transforma-
tion in terms of the effects it induces on the seman-
tic net representation of each of the above categories.
Splice-Data-Accesses is an example of a transforma-
tion that performs a splice along the information flow
dimension. Likewise, an evolution transformation that
introduces an intermediate specialization of some con-
cept (e.g., given a specification containing type per-
son and type airline-pilot, a specialization of person,
we might introduce an intermediate type employed-



person) is characterized as inducing a splice upon the
specialization link structure. Similarly, an evolution
transformation that wraps a statement inside a con-
ditional is also characterized as inducing a splice, but
upon the control-flow structure (the control flow link
that led into the original statement now leads into the
surrounding conditional statement, and there is a link
from the conditional to the original statement).

4.5 Reconciling conflicting views

ARIES permits views of specifications to diverge, via
different folders. Although divergence is important at
certain stages of the analysis process, such divergences
must eventually be reconciled.

One technique that we have explored to facilitate
reconciliation is the process of merging parallel elabo-
rations [9]. Feather analyzed a restricted case of rec-
onciliation, where different views of the specification
are all derived by transformation from a common root
specification, which describes the system in a very ab-
stract way. This technique attempts to combine the
various transformations into a linear sequence. By
analyzing the transformations, their applicability con-
ditions, and what they apply to, it is possible in many
cases to determine automatically whether transforma-
tions applied to different, views may interfere with each
other.

The approach that we envision for ARIES centers on
gradual elimination of differences between the concep-
tual models, regardless of their origin. If two members
of an analysis team are using conflicting definitions
of the same concept, they will each employ transfor-
mations step by step to eliminate those differences.
In some cases this will involve having each analyst
distribute the transformations that they-employed so
that the other analyst can employ them as well. As
differences are resolved, specification components can
be gradually promoted to the project-shared folders.
In those cases where an analyst has employed a model
that is more detailed than necessary for the shared
model, abstraction transformations may be employed
to reduce the detail to the level shared throughout the
project.

5 Related Work

The evolutionary approach to requirements spec-
ification has a number of precursors. Burstall and
Goguen argued that complex specifications should be
put together from simple ones, and developed their

language CLEAR to provide a mathematical founda-
tion for this construction process {5].

Goldman observed that natural language descrip-
tions of complex tasks often incorporate an evolution-
ary vein — the final description can be viewed as an
elaboration of some simpler description, itself the elab-
oration of a yet simpler description, etc., back to some
description deemed sufficiently simple to be compre-
hended from a non-evolutionary description [11].

Fickas suggested the application of an Al problem-
solving approach to specification construction [10].
Fundamental to his approach is the notion that the
steps of the construction process can be viewed as the
primitive operations of a more general problem-solving
process, and are hence ultimately mechanizable. Con-
tinuing work in this direction is reported in [31] and
[2].

In the Programmer’s Apprentice (PA) project (see
[30]), the aim is to build a tool which will act as an
intelligent assistant to a skilled programmer. In their
approach, programs are constructed by combining al-
gorithmic fragments stored in a library. These algo-
rithmic fragments are expressed using a sophisticated
plan representation, with the resulting benefit of be-
ing readily identifiable and combinable. Their more
recent work on supporting requirements acquisition
(the “Requirements Apprentice,” [29]) addresses the
early stages of the software development process, op-
erating on representations of requirements. The PA
and ARIES approaches are closely related. Many evo-
lution transformations instantiate cliches as part of
their function. We are currently exploring ways of
making these cliches more explicit in our transforma-
tion system.

Karen Huff has developed a software process mod-
eling and planning system that is in some ways similar
to ours [16]. Her GRAPPLE language for defining plan-
ning operators influenced our representation of evolu-
tion transformations. Conversely, her meta-operators
applying to process plans were influenced by our work
on evolution transformations.

Kelly and Nonnenmann’s WATSON system [24] con-
structs formal specifications of telephone system be-
havior from informal scenarios expressed in natural
language. Their system formalizes the scenarios and
then attempts to incrementally generalize the scenario
in order to produce a finite-state machine. Acquisition
from scenarios is a useful complement to the work we
are doing and Benner in our group is currently inves-
tigating this area further [4].

The PRISMA project [26] is also a system for assist-
ing in the construction of specifications from require-

54



ments. There is striking similarity between their ap-
proach and ours — the use of multiple presentations,
and an underlying semantic-net formalism. They have
clearly thought about and developed heuristics to op-
erate on or between presentations, an aspect that we
have only recently begun to address. Conversely, we
have provided much more support for evolution.

6 Summary

ARIES provides a variety of capabilities to support
the process of requirements acquisition and analysis.
These capabilities include acquisition, review, evolu-
tion support, analysis, and reuse support. These are
intended to help analysts satisfy the conflicting goals
of software requirements specification in a gradual and
systematic way. ARIES as a whole focuses on the prob-
lems of describing systems from different viewpoints,
and reconciling different viewpoints.

By building the ARIES prototype, we have been
able to identify and offer solutions for many of the
significant challenges which must be met in making
knowledge-based requirements and specification de-
velopment environments a reality. Specifically we
have concentrated on supporting reuse of large do-
main independent and dependent knowledge-bases,
providing multi-presentation acquisition along with
significant automation support in the form of evo-
lution transformations, specification analysis, simula-
tions. We have developed mechanisms around many
requirements support features including folders, reuse
techniques, acquistion and review, analysis and sim-
ulation, evolution transformations, and traceability.
Work on the project is ongoing; most of the capa-
bilities envisioned for the system are already in place,
but much work remains to be done.

7 Acknowledgements

We wish to thank Kevin Benner for comments
on this paper. Charles Rich has provided impor-
tant guidance to this work. We would like to ac-
knowledge current and previous members of the ARIES
project: Jay Myers, K. Narayanaswamy, Jay Runkel,
and Lorna Zorman. This work was sponsored in part
by the Air force Systems Command, Rome Air De-
velopment Center, under contracts F30602-85-C-0221
and F30602-89-C-0103. It was also sponsored in part
by the Defense Advanced Research Projects Agency
under contract no. NCC-2-520. Views and conclusions

contained in this paper are the authors’ and should not
be interpreted as representing the official opinion or
policy of the U.S. Government or any agency thereof.

References

[1] Federal Aviation Administration. Advanced Au-
tomation System: System Level Specification,
FAA-ER-130-005G, April 1987.

[2] J.S. Anderson and S. Fickas. A proposed per-
spective shift: Viewing specification design as a
planning problem. In Proceedings of the 5th Inter-
national Workshop on Software Specification .and
Design, Pittsburgh, Pennsylvania, pages 177-184.
Computer Society Press of the IEEE, May 1989.

[3] K. Benner. Using simulation techniques to an-
alyze specifications. In Proceedings of the 5th
KBSA Conference, Rome, NY, 1990. Data Anal-

ysis Center for Software.

[4] K. Benner and W.L. Johnson. The use of scenar-
ios for the development and validation of spec-
ifications. In Proceedings of the Computers in
Aerospace VII Conference, Monterey, CA, 1989.

[6] R.M. Burstall and J. Goguen. Putting theories
together to make specifications. In Proceedings of
the Fifth International Conference on Artificial
Intelligence, pages 1045-1058, August 1977.

[6] D. Cohen. Symbolic execution of the gist spec-
ification language. In Proceedings of the Eighth
International Joint Conference on Artificial In-
telligence, pages 17-20. 1IJCAI, 1983.

[7] D. Cohen. AP5 Manual. USC-Information Sci-
ences Institute, June 1989. Draft.

(8] A.M. Davis. Seftware Requirements Analysis and
Specification. Prentice Hall, Englewood Cliffs,
N.J., 1990.

[9] Martin S. Feather. Constructing specifications
by combining parallel elaborations. IEEE Trans-
actions on Software Engineering, 15(2):198-208,
February 1989. Available as research report #
RS-88-216 from ISI, 4676 Admiralty Way, Marina
del Rey, CA 90292.

[10] S. Fickas. A knowledge-based approach to spec-
ification acquisition and construction. Technical
Report 86-1, CS Dept., University of Oregon, Eu-
gene, 1986.

55



[11]

[12]

[13]

[17]

[18]

[22]

N.M. Goldman. Three dimensions of design de-
velopment. In Proceedings, 3rd National Confer-
ence on Artificial Intelligence, Washington D.C.,
pages 130-133, August 1983.

C. Green, D. Luckham, R. Balzer, T. Cheatham,
and C. Rich. Report on a knowledge-based soft-
ware assistant. In Readings in Artificial Intelli-
gence and Software Engineering. Morgan Kauf-
mann, Los Altos, CA, 1986.

D. Harel, H. Lachover, A. Naamad, A. Pnueli,
M. Politi, R. Sherman, and A. Shtul-Trauring.
Statemate: A working environment for the devel-
opment of complex reactive systems. In Proceed-
ings of the 10th Intl. Conf. on Software Engineer-
ing, 1988.

D. Harris and A. Czuchry. The knowledge-based
requirements assistant. JEEE Expert, 3(4), 1988.

D. Harris and W.L. Johnson. Reuse of require-
ments knowledge. In Proceedings of KBSE 6,
1991. submitted.

K.E. Huff and V.R. Lesser. The GRAPPLE plan
formalism. Technical Report 87-08, U. Mass. De-
partment of Computer and Information Science,

April 1987.

W.L. Johnson. Deriving specifications from re-
quirements. In Proceedings of the 10th Interna-
tional Conference on Software Engineering, pages
428-437, 1988.

W.L. Johnson. Specification as formalizing and
transforming domain knowledge. In Proceedings
of the AAAI Workshop on Automating Software
Design, 1988.

W.L. Johnson and M.S. Feather. Reusable gist
language description. Available from USC / ISI,
1991.

W.L. Johnson and M.S. Feather. Using evolution
transformations to construct specifications. In
Automating Sofiware Design. AAAI Press, 1991.

W.L. Johnson, M.S. Feather, and D.R. Harris.
Applying domain and design knowledge to re-
quirements engineering. IEEE Office Knowledge
Newsletter, 1991. in press.

W.L. Johnson, M.S. Feather, and D.R.. Harris. In-
tegrating domain knowledge, requirements, and
specifications.  Journal on System Integration,
1991. in press.

56

[23]

[24]

[25]

[26]

[32]

(33]

W.L. Johnson and K. Yue. An integrated specifi-
cation development framework. Technical Report
RS-88-215, USC / Information Sciences Institute,
1988.

V.E. Kelly and U. Nonnenmann. Reducing the
complexity of formal specification acquisition. In
Proceedings of the AAAI-88 Workshop on Au-
tomating Software Design, pages 66-72, 1988.

J.J. Myers and W.L. Johnson. Towards specifica-
tion explanation: Issues and lessons. In Proceed-
ings of the 3d Knowledge-Based Software Assis-
tant Conference, 1988.

C. Niskier, T. Maibaum, and D. Schwabe.
A look through PRISMA: Towards pluralistic
knowledge-based environments for software spec-
ification acquisition. In Proceedings, 5th Inter-
national Workshop on Software Specification and
Design, Pittsburgh, Pennsylvania, May, pages
128-136. Computer Society Press of the IEEE,
1989.

The KBSA Project. Knowledge-based specifica-
tion assistant: Final report. unpublished, 1988.

Reasoning Systems, Palo Alto, CA. Refine User’s
Guide, 1986.

H.B. Reubenstein and R.C. Waters. The require-
ments apprentice: Automated assistance for re-
quirements acquisition. IEEE Trans. on Software
FEngineering, 17(3):226-240, March 1991.

C. Rich. The Programmer’s Apprentice. ACM
Press, Baltimore, MD, 1990.

W.N. Robinson. Integrating multiple specifica-
tionss using domain goals. In Proceedings, 5th
International Workshop on Software Specifica-
tion and Design, Pittsburgh, Pennsylvania, May,
pages 219-226. Computer Society Press of the
IEEE, 1989.

G.L. Jr. Steele. The definition and implementa-
tion of a computer programming language. Tech-
nical Report 595, MIT Artificial Intelligence Lab-
oratory, 1980.

W. Swartout. Gist english generator. In Pro-
ceedings of the National Conference on Artificial
Intelligence. AAAI, 1982.



